<Tri-2024-2091>, hint
Let vectors of AB, AC be (AB), (AC).
AR/RB=BP/PC=CQ/QA=CP//P'B=t/1-t,
(AP')=t(AB)+(1-t)(AC), Let AK/KQ=x/1-x, then (AK)=x(1-t)(AC)+(1-x)t(AB), (AK)=y(AP')
x=1/2/ AK=(1-t)1/2(AC)+t1/2(AB), AP=t(AC)+(1-t)(AB). (AG)=1/3(AB)+1/3(AC)
PG/GK=z/1-z. (AG)=z(AK)+(1-z)(AC). Then z=2/3.
P,G,K are collinear.
No comments:
Post a Comment