<Cir-2024-767>, hint
Let PA=PB=r (radius), <PMA=x. MP=p
PA^2=r^2+p^2-2pr cosx, PB^2=r^2+p^2-2pr cos(180-x)
PA^2+PB^2=2(r^2+p^2)=constant
Let center of sphere ,its radius be O, R and suppose line MO cuts sphere at T and T'
be the other point on S. Then in triangle MOT' OT=OT',OT'+T'M>OM=OTM. T'M>TM
Hence AT^2+BT^2 is minimum
No comments:
Post a Comment