<Tri-2024-2168>, hint
Suppose PAB is fixed and C moves on circle of radius 3 (=PC) , then
area of ABC is max when PC is perpendicular to AB. Thus area of ABC is max
when P is orthocenter(=H) of ABC. In triangle HBC (HB=2, HC=3, <BHC=180-60(<A)=120
[ABC]=1/2 2x3 sin 120=(3/2) root(3). by cosine 2nd law BC=root(19)
Hence altitude of HBC =[HBC]/BC={(3/2)root(3)}/{root(19)}
Altitude of ABC={(3/2)root(3)}/{root(19)}+1
Max area of ABC =0.5 x root(19) x<{(3/2)root(3)}/{root(19)}+1>
No comments:
Post a Comment