<Qua-2025-753>, hint
Since OE is bisector of <DOA, DE/EA=OD/OA. Let AD=d, <OAD=x DE/DA= d sinx/d cosx
CD=d tan x, AB=d cot x, EP/CD=AE/AD =QF/CD ---> EP=QF
EF=EQ+QF--EQ=AB X DE/AD QF=PE=CD X AE/AD
EQ=AB X DE/AD <-EQ=AD cotx X DE/AD= d cotx X d sinx/(dsinx+cosx)
=d cosx/(sinxx+cosx). Similarly FQ=EP= CD X AE/AD=d sinx /(sinx+cosx)
Hence EF=EQ+QF= d(cosx+sinx)/(sinx+cosx)=d=AD
No comments:
Post a Comment