<Tri-2025-2191>, hint
Triangles HBC and HC'B' are similar.
Let <BHM=x=B'HN then <C'HM=A-x=<CHN
PH=HC' /(cosx cos(A-x)), QH=HB' /(cosx cos(A-x))
Hence Triangles HB'C' HPQ, HBC are similar PQ//BC.
Let D be the midpoint of BC. Locus of the midpoints of PQ is HD( except H, D )
No comments:
Post a Comment