<Tri-2025-2203>, hint
Suppose BM and BN cut AC in M' and N' respectively
Since triangles BDQ and BEP are isosceles <BND=<BME=90
BN=AC cosA tan(A/2) cos(A/2), BM=AC sinAtan(C/2) cos(C/2)
BN'=BH(altitude)/ cos(A/2) BM'=BH/ cos(C/2)
BM/BN=BM'/BN' <----(cosA sin A/2)/(cosC sinC/2)=(cosC/2)/(cosA/2)
cosAsinA=cosCsinC
No comments:
Post a Comment