<Tri-2025-2203>, hint
Let D' on the extended CA such that DA=AD'
Then BD=BD' <BDD'=<BD'D=2<ABC. The bisector of <BD'D meets BC at M.
Since <CD'M=<ABC <D'MC=90. ( Triangles BCA and D'CM are similar)
Thus Triangles D'BM and D'CM are congruent.
Hence BD=BD'=BE+ED=BE+DC=2AD+DC. Hence BE=2AD.
No comments:
Post a Comment