<Qua-2025-784>, hint
Incircle of triangle ABC, incenter I touches BC,CA,AB at D,E,F respectively and M be the midpoint of DF .
Line BM cuts EF at K. Prove <BKC=90.
BM/MK=(AM cotB/2)/AM cotC/2 (<MFE=90-C/2)=(cotB/2)/(cotC/2)
BD/DC=(rcotB/2)/(rcotC/2)=(cotB/2)/(cotC/2), r=inradius
Hence DM and CK are parallel and <BMD=<BKC=90.
No comments:
Post a Comment