<Tri-2025-2255>, hint
Since B,C,A,D are concyclic on S', <ADB=180-A,
AB cut circle O'O"A at E, let M be the midpoint of AC. Since O'O"AD are concyclic
<ADO'=<AO"M=90-A/2, Since A, D, E, O' are concyclic <O'DE=<O'AB=90-A.
Hence <BDE+EDO'+O'DA=<ADB ---> <BDE+90-A+90-A/2=180-A <BDE=A/2
Since <DEA=DO'A=<A. In triangle ADE <DAE+<DEA+<ADE(=<ADB-<EDB)(=180-A-A/2)=180-->
<DAE+A+180-A-A/2=180. <DAE=A/2=<BDE
No comments:
Post a Comment