<Tri-2025-2270>, hint
Let T be the point of tangency at which circles w touches the circumcircle of ABC.
OT = R(circumradius), O; circumcenter of ABC
CA'=s-c thus A(0)A'=a/2-(s-c)=(c-b)/2=R(sinC-sinB)
OT-OA(0)=A(0)T--> R-R cosA=R(sinC-sinB) -->R(1-cosA)=R(sinC-sinB)
2sin^2(A/2)=2cos(C+B)/2 sin(C-B)/2--->sinA/2=sin(C-B)/2--->A+B=C, <C=90
a-r+b-r=c 2r=a+b-c ,OT-OA(0)=A(0)T--->c/2-b/2=a/2-r..> 2r=a+b-c
Triangle ABC, <C=90, Similarly in case of AC.
No comments:
Post a Comment