<Tri-2025-2283>, hint
Let M be the midpoint of OH, O' be the circumcenter of triangle HOA'
Height from BC to midline m parallel to BC ; 1/2 (AA')=RsinC sinB
Height from BC to H: 2RsinC cosB cotC=2R cosBcosC
Height from BC to O=R cosA=-R(cos(B+C)
Height from BC to O' ( circumcenter of HOA')=HA'/2=RcosB cosC
Since OM=MH and O'M=MP(P; point on midleline m)
1/2(RcosA+2R cosB cosC)=1/2(R cosB cosC+RsinC sin B) --->
-cos(B+C)+cosBcosC=sinBSinC <---> -cosBcosC+sinBsinC=sinBsinC-cosBcosC
No comments:
Post a Comment