<Qua-2025-799>, hint
AC and BD intersect at Q.Let QA=a, QB=b, QC=c, QD=d
Since KP//BC, QK/QP=QB/QC, hens QK=tb, QP=tc
Since triangles QAK and QCM are similar QK=xa QM=xc
QK=tb=xa---> x/t=b/a QP/QM=t/x=a/b. Thus triangles QPM and QAB are similar
<QPM=<QAB. <QPM+QPK=<QAB+<QCB=90
No comments:
Post a Comment