<Tri-2025-2218>, hint
Let H(A) lie on the circumcircle of ABC and symmetric to H about BC.
Since A'HH(A) is isosceles OA'+A'H =OA'+A'H(A)=R. A' is the point on BC,
intersectin of BC with OH(A)
Vector AA'=OA'-OA, then AA'+BB'+CC'=(OA'+OB'+OC')-(OA+OB+OC)=0
which means OA+'OB'+OC'=0. because OA+OB+OC=0. IF H=O , equilateral,
OA'+OB'+OC=1/2(OB+OC+OC+OA+OA+OB)=0
No comments:
Post a Comment